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Learning-Based Outdoor Localization Exploiting

Crowd-Labeled WiFi Hotspots

Jin Wang™, Jun Luo™, Sinno Jialin Pan, and Aixin Sun

Abstract—The ever-expanding scale of WiFi deployments in metropolitan areas has made accurate GPS-free outdoor localization
possible by relying solely on the WiFi infrastructure. Nevertheless, neither academic researches nor existing industrial practices seem
to provide a satisfactory solution or implementation. In this paper, we propose WOLoc (WiFi-only Outdoor Localization) as a
learning-based outdoor localization solution using only WiFi hotspots labeled by crowdsensing. On one hand, we do not take these
labels as fingerprints as it is almost impossible to extend indoor localization mechanisms by fingerprinting metropolitan areas. On the
other hand, we avoid the over-simplified local synthesis methods (e.g., centroid) that significantly lose the information contained in the
labels. Instead, WOLoc adopts a semi-supervised manifold learning approach that accommodates all the labeled and unlabeled data

for a given area, and the output concerning the unlabeled part will become the estimated locations for both unknown users and
unknown WiFi hotspots. Moreover, WOLoc applies text mining techniques to analyze the SSIDs of hotspots, so as to derive more
accurate input to its manifold learning. We conduct extensive experiments in several outdoor areas, and the results have strongly
indicated the efficacy of our solution in achieving a meter-level localization accuracy.

Index Terms—WiFi-based localization, manifold learning, crowdsensing, mobile computing

1 INTRODUCTION

ALTHOUGH WiFi has been intensively used for the pur-
pose of indoor localization since the seminal work [1],
GPS is still dominating the outdoor market. Nevertheless,
the landscape of outdoor (user) localization is shifting due to
the high energy consumption of embedded GPS sensors (in
smartphones, for example) and the frequent loss of signal in
“urban canyon” [2], [3]. Therefore, it is as imperative as
indoor scenarios to look for supplementary location indica-
tors in metropolitan areas. Whereas many location indica-
tors, namely general RF signal [3], [4], [5], light [6], sound [7],
and magnetic field [8], can be explored indoors, they either
lose their location discriminability (e.g., light, sound, and
magnetic field) or offer very low localization accuracy due to
the sparse deployment of signal sources (Cellular' and FM).
In the meantime, the WiFi density can be so high that it is
common to discover up to hundreds of public or private hot-
spots at any position in metropolitan areas. As a result, the
pervasively available WiHi infrastructure appears to a prom-
ising choice for us to explore further.

1. CTrack [3], though based on GSM, achieves satisfactory vehicle
trajectory mapping by exploiting the trajectory continuity along a road,
but this approach may not work for general pedestrian localization pur-
pose, which may not exactly follow the road system and thus has a
more complex moving pattern.
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While the majority of the research efforts are still dwell-
ing in indoor localization, quite a few industrial practices
have already started to provide GPS-free outdoor localiza-
tion services based on WiFi infrastructure [9], [10], [11], [12],
[13]. These services are backed up by one fact: since one
WiFi scan may discover up to hundreds of WiFi hotspots in
a common metropolitan area, crowdsensing by a large num-
ber of smartphone users has already labeled those hotspots
without the need for war-driving by the provider of locali-
zation service. War-driving often requires high commitment
of human resource and time to traverse over the entire area.
Equipment, path and time should also be carefully designed
and scheduled to ensure the quality of data collected. In
contrast, crowdsensed databases are contributed by diversi-
fied individuals, and they are not intentionally established
but crowdsourced to these individuals during their daily
commute or location-based recommendation queries. Con-
sequently, even a small database in such a system (e.g.,
OpenBMap [10]) may have thousands of WiFi hotspots
recorded for one metropolitan area, with each one getting
several hundreds of labels. If we can properly exploit such
“big data”, GPS-free localization in metropolitan areas can
be made very accurate.

Unfortunately, neither academic proposals (e.g., [14], [15])
nor industrial practices (e.g., [10], [11]) have achieved a satis-
factory localization accuracy so far. Most academic proposals
are trying to migrate the WiFi fingerprinting methods (e.g.,
[1]) proven to be effective indoors to a metropolitan area, but
fingerprinting such a huge area through war-driving is
extremely difficult (if not impossible), and the localization
algorithms adapted to sequential war-driving labels (e.g.,
particle filter [14]) do not work well for crowdsensed labels
possibly absent of sequential timestamps. More importantly,
localization does not work beyond the fingerprinted zones.
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Some other academic proposals (e.g., [2]) along with most
industrial practices take a simpler approach that involves a
WiFi hotspot localization phase using the labels and a user
localization phase based on the estimated hotspot locations.
Whereas this method avoids the weakness of the fingerprint-
ing method and also delivers the WiFi hotspot locations as a
byproduct, it cannot achieve a good localization accuracy
because the synthesizing methods in the both phases (e.g.,
centroid [2], [10]) are over simplified and they process data
only in a localized (in topological sense) manner, so that they
i) may not handle the label errors well enough to avoid error
accumulation across the two phases, and ii) can cause a sig-
nificant information loss to hamper the crowdsensed labels
from fully contributing to the user localization.

Additionally, with the increasing popularity of crowd-
sourced social venue check-in database (e.g., FourSquare,
Yelp) and industry-maintained venue database (e.g., Google
Places, Baidu Map), more information regarding public pla-
ces in metropolitan areas are publicly available, including
name and geo-location. Since part of hotspots in urban areas
are from public areas for food, leisure or services, it is highly
possible that the places that maintain the hotspots have
been discovered and socially checked-in by mobile users to
crowdsourced venue database. Another part of hotspots are
from areas for companies and agencies, which are mostly
maintained in industry-maintained venue database. By ana-
lyzing the text information in the SSIDs of collected hot-
spots, venue information are revealed to facilitate the
labelling process for part of the location-unknown hotspots.

In order to fully exert the strength of WiFi-based localiza-
tion outdoors, we propose an integrated solution, WOLoc, to
better utilize the crowdsensed WiFi labels, including both
SSID and RSSI, for improving the localization accuracy.
Equipped with a large amount of labels, WOLoc takes a holis-
tic view on all such data collected within a metropolitan area
(or a sub-area) and it processes the labels based on semi-
supervised manifold-learning techniques after partially label-
ling unknown hotspots by SSID analysis. The rationale
behind our design is the following: assuming all labels are
perfect (with each label produced by a mobile device § for a
hotspot ® containing a tuple of {location of §, RSSI from ©
to 8}), the locations of all mobile devices and hotspots should
lie on a low dimensional euclidean space (normally 2D or at
most 3D). Although imperfect labels (in terms of both location
and RSSI) may “bend” the original space into a much higher
dimension, it is highly possible that those locations still lie on
some manifold structure of low dimension [16]. Therefore,
WOLoc aims to discover this manifold structure so as to
recover the true locations of the both users and WiFi hotspots.
In particular, we are making the following contributions:

e A pre-processing method to filter the labels and
remove meaningless (e.g., mobile) hotspots, so that
outliers that might significantly deviate from the
ground truth can be removed.

e A specifically designed manifold-learning scheme to
holistically synthesize all the filtered labels belong-
ing to a certain metropolitan area, so as to locate
both users and WiFi hotspots.

e A unified text analysis pipeline to retrieve venue infor-
mation from hotspot SSID and query venue-related

database for positioning part of unlabeled hotspots in
the manifold.

e An online localization approach to take only a small
subset of labels into account when processing loca-
tion queries so as to improve efficiency while pre-
serving localization accuracy.

e A full implementation and extensive experiments
using it in several metropolitan areas to validate the
effectiveness of our WOLoc system.

Note that WOLoc delivers hotspots positions as a
byproduct; this may not serve the purpose of user localiza-
tion, but it may provide guidance for users to look for better
WiFi performance. The remaining of the paper is organized
as following. We first survey the literature in Section 2.
Then we briefly discuss the current practices of outdoor
localization in Section 3. The detailed design of WOLoc sys-
tem is presented in Section 4 and is then evaluated in
Section 5. We finally conclude our paper in Section 6.

2 RELATED WORKS

Whereas most user localization systems are designed for
indoor scenarios, GPS-free outdoor localization has a long
history under the topic of wireless sensor network (WSN)
localization but very few of them are dedicated to user local-
ization. Our following discussions categorize them into 1)
range-based method and ii) range-free method, but omit
recent developments on (RF) Angle of Arrival (e.g., [17]),
which is clearly not suitable for outdoor scenarios.

2.1 Range-Based Localization Method

Range-based methods normally require pairwise distance
measurements among all or part of the devices (or among
various locations of the same device). The distance measure-
ments are normally obtained through ToF/ToA [18], [19],
TDoA [20], RSSI (with a certain propagation model) [21],
and dead reckoning [22]. Measuring distance through ToF/
ToA/TDoA requires either non-RF signal sources [18], [20]
(so that the time can last long enough to be measurable) or a
sophisticated design for RF signal [19] (which would not be
usable for outdoor localization any sooner). Dead reckoning
is useful for assisting user tracking in small-scale indoor
space [22] (otherwise the accumulated errors can render the
results unusable), but locating a user in a metropolitan area
cannot solely rely on dead reckoning.

As a result, the error-prone RSSI-based ranging seems to
be a reasonable solution. As RSSI values are subject to vari-
ous shadowing effects [23], existing methods focus on
suppressing the induced errors. [21] uses pair-distance con-
straints obtained between hotspots and users to infer an RF
model. However, the knowledge of hotspot location is
absent in outdoor scenarios. [24] introduces collaborative
localization to WSNs; it adopts a “brute-force” dimension
reduction conducted by minimizing the mean errors itera-
tively between the error-twisted high dimensional structure
and its 2D projection. Many follow-ups [25], [26], [27]
improve its efficiency through new iterative approaches or
by re-defining the optimization problem. However, the peer
nature of WSNs makes them very different from WiFi net-
works where distances among hotspots (or users) cannot be
explicitly obtained through RSSI modeling.
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Fig. 1. A two-stage localization approach: Hotspots localization (left) and
user localization (right). We mark known locations in black and estimated
locations in red. Hotspots localization aims to locate hotspots (AP1 to
AP5) given several user locations (U1 to U4) along with corresponding
hotspots RSSIs. User localization aims to estimate a new user's (User
X) location based on previously estimated locations and their respective
RSSIs. [Best viewed in color.].

The approach of manifold-alignment [28] can be deemed
as an implicit range-based method: it does not directly con-
vert RSSI readings into distances, but it rather considers
those readings as metrics in a certain manifold structure.
This approach has been applied to indoor tracking [16], but
it is still an open question whether it works or not for locali-
zation with crowdsensed labels in the absence of sequential
timestamps.

2.2 Range-Free Localization Method

Range-free methods have two different manifestations,
namely beacon-enabled methods for multi-hop networks [29],
[30], [31] and fingerprinting method for indoor localiza-
tion [1], [32]. The beacon-enabled methods only require a
node/user to hear from a few beacons with known locations,
and then use simple computations [29] or logical reason-
ing [30], [31] to obtain a coarse-grained location estimation.
Fingerprinting methods take RSSIs not as a distance indicator
but rather as an observed pattern [1], [32], so indicating loca-
tions by pattern matching has the potential to achieve a fine-
grained localization if a certain area is fully labeled with the
observable patterns (or fingerprints). However, whereas cer-
tain efforts have been made to migrate the fingerprinting
methods from indoor scenarios to outdoor environment [14],
[15], it is now well accepted that i) fingerprinting an area
(even a very small one) through war-driving is a major bottle-
neck even for indoor localization, and ii) the localization abil-
ity is confined to only the region that has been fingerprinted.
As a result, practical deployments for outdoor localization
are mainly using the computationally light beacon-enabled
methods by taking WiFi hotspots as beacons [2], [10]. Never-
theless, as we shall show in both Sections 3 and 5, the over-
simplified method cannot offer satisfactory localization accu-
racy due to the significant loss of information.

3 OuTDOOR GPS-FREE LOCALIZATION: TWO-
STAGE CENTROID VERSUS MANIFOLD LEARNING
3.1 Current Practices of Outdoor GPS-Free
Localization

Most of current commercial or open-source WiFi localization
systems can be clearly divided into two stages: Hotspot

g

Fig. 2. Comparing weighted centroid method (left) with manifold-based
learning (right). We consider a target hotspot whose true location is
shown as the black star. Black dots show locations of users that discover
it. Blue stars are its neighboring hotspots in the constructed manifold.
The red star indicates the estimated hotspot location, with a concentric
red disk denoting a rough transmission range of it: both can be seriously
biased by the centroid method. The phone icon indicates a new user
location that is better predicted by our manifold-based learning scenario.
[Best viewed in color.].

Localization (HL) and User Localization (UL), as illustrated
by Fig. 1. Hotspots localization is often regarded as the offline
pre-processing stage, where the locations of WiFi hotspots
are estimated based on crowdsensed labels collected and
stored in a database. These estimations stored in the database
are regularly updated as new labels become available. To the
best of our knowledge, WiGLE [9] and Skyhook [11] have
proprietary implementations, but they have published that
they employ weighted centroid method to estimate hotspot
locations based on the crowdsensed labels [33], [34]. In partic-
ular, each label contains a GPS location indicating where the
concerned hotspot is heard (i.e., a user location), as well as
the RSSI from that hotspot indicating the receiver’s relative
distance to the hotspot. As a result, a hotspot location is esti-
mated as the centroid of all labels (their GPS locations) con-
cerning it, but weighted by the respective RSSIs.

User localization is regarded as the online localization
stage, when a user location is calculated based on the
observed hotspots whose positions have been estimated
and stored at the first stage, as well as their RSSI readings.
The weighted centroid method is again used in this stage,
which is a reversed process of getting the hotspots locations:
the estimated hotspot locations are used to compute the cen-
troid that indicates the user location, with RSSIs serving as
the weights. OpenBMap [10] is open-source and its offline
localization algorithm applies a Kalman Filter to sequen-
tially process the hotspot labels during this stage, this seem-
ingly more sophisticated method essentially yields the same
(unsatisfactory) localization accuracy, as we shall explain
soon and experimentally evaluate in Section 5. Fig. 1 illus-
trates how a two-stage approach works in an ideal case.

Although a two-stage approach may work in an ideal
case, it is prone to error accumulation across the two stages
because the information contained in the original labels do
not get fully propagated to the UL stage. Moreover, a two-
stage approach treats each estimation (in both stages) in a
localized manner, neglecting the spatial relationship among
hotspots and users; losing such information can be fatal to
the final location estimation result. In Fig. 2, we use left side
as an illustration of centroid-based methods.

One main limitation of centroid-based methods in estimat-
ing a hotspot location is that it treats the hotspot indepen-
dently from other hotspots. Therefore, no matter how RSSIs
are factors as weights, the estimated hotspot location (red
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star) is always inside the convex hull induced by the observ-
ing user locations (black dots). When the collected data are
mainly on the road, the weighted centroid method also gives
the estimated location of a hotspot very close to the road.
Apparently, such a large error may seriously jeopardize the
user localization later: if we simply estimate a user requesting
location (the mobile phone) as within the red circle centered
around the estimated hotspot location, it can be seriously
biased. In sum, a two-stage localization method that consid-
ers hotspot independently easily accumulates error.

3.2 Manifold Perspective of WiFi-Based
Localization

Manifold learning is essentially a non-linear dimensionality
reduction method. It is based on a basic observation that
dimensionality of many data sets is only artificially high.
Algorithms relevant to manifold learning tends to learn the
manifold structure underlying in the dataset. When part of
the data are labeled, semi-supervised manifold alignment can
be applied [35] to predict the unlabeled data. If we represent
each data as a vertex and construct a graph based on their
neighbourhood relation, a general objective cost function of
semi-supervised manifold alignment problem is defined as

CE) = |fi—ui|*+ v Lf, (1

where f is a mapping function defined on the vertices of the
graph that matches labeled vertices to the target values, y;
represents each labeled data value, L is the graph Laplacian
for the underlying manifold, and y controls the relative
weights among terms. The first term is the fitting error, and
the second term is the regularization term for graph Lapla-
cian which ensures nearer points on the manifold have
more similar values, thus it enforces the smoothness along
the manifold.

In the context of WiFi-based localization, if we consider
the signal received for all hotspots from one location as a
data point, the dimension of the data is high given that hun-
dreds of hotspots can be observed at that location. Fortu-
nately, as two close-by locations should have similar signal
readings, the distance between data points in the high-
dimensional space intrinsically preserves the geometry
between locations. If every signal is received perfectly and
follows the Path Loss Model based on the distance between
transmitter and receiver, the data is only artificially high-
dimensional and should lie on a 2D manifold or a 3D one
by considering different levels of floors. However, due to
the errors inherent to RSSIs, the manifold created based on
them would be bend to a space with dimension higher than
2 or 3. Given some of the locations are labeled by crowd-
sensing participants, a semi-supervised manifold regulari-
zation aims to learn the graph structure in the low-
dimensional space that can best fit all the signal data while
preserving their geometry. The unlabeled locations are thus
estimated through the low-dimensional structure [36].

Different from the two-stage method that focuses locally
on a single hotspot or user, manifold learning takes a more
holistic view over all crowdsensed data. It not only uses
RSSI as distance metrics between user and hotspots but also
reconstructs the topological relations among hotspots and
users. User manifold is constructed under the observation

Pre-processing <

Manifold Learning

User Location

(L & A

Hotspots Location

¢ Q9

Hotspot
Online
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QWT’

Online Location Query Processing

Fig. 3. WOLoc system architecture.

that close-by locations observe similar RSSIs from all hot-
spots, while hotspot manifold is constructed under the
observation that two close-by hotspots cause similar RSSI
readings to all receivers. Furthermore, these two manifolds
(for users and hotspots, respectively) are unified into one
large manifold (more details in Section 4.3). As shown in
Fig. 2 (right side), within the constraint of the large mani-
fold, the target hotspot (red star) is not independently esti-
mated by the surrounding users’ observations (black dots)
but rather together with its surrounding hotspots (blue
stars). Obviously, constructing a manifold to represent the
relations among hotspots and users preserves the label
information to the maximum extent, hence it has the poten-
tial to obtain a higher localization accuracy.

4 WolLoc: A MANIFOLD PERSPECTIVE IN
LOCALIZATION

To overcome the potential problem inherent in the current
practices, we proposed WOLoc as an outdoor localization
system driven by manifold-based learning techniques. The
system architecture is comprised of three parts shown in
Fig. 3: pre-processing of crowdsensed data, offline manifold
learning exploiting existing crowdsensed labels, and online
location query processing.

4.1 Pre-Processing of Crowdsensed Data

Many crowd-sensing applications available in the market
share a similar mechanism to obtain crowdsensing hotspot
location data. The application starts a hotspot discovery
according to various schedules (e.g., triggered by a signifi-
cant location change). It records, for each discovered hot-
spot, the BSSID, SSID, RSSI. It also obtains its own location
(latitude, longitude) along with GPS signal statistics (accu-
racy, represented by confidence range, and the number of
satellites), and this location and the corresponding time-
stamp are associated with every discovered hotspot. All
these information for a given hotspot constitute a label. A
record contains a set of labels collected by a user at a given
position. Crowdsensing data include two types: i) sequen-
tial data with timestamps and ii) single data at any position.
We first mark the records with very few number of satellites
or large confidence range as “suspicious records”, which
mostly occur among high-rises, under shelters or at the
beginning of a trip when GPS is still searching for satellites.
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Then we eliminate, out of these suspicious records, those
with fewer than 5 satellites or a confidence range beyond
20 meters. For data logged sequentially (in timestamp), we
also remove those with huge jumps in distance and velocity
to avoid potential errors caused by inaccurate GPS location;
this is done by calculating the distance between consecutive
records and average velocity inside a sliding window of 3
records. We set distance threshold as 100 meters and veloc-
ity threshold as 80 m/s given a sampling rate of 1 Hz.

Among all the detected hotspots, two types of mobile
hotspots should be eliminated: i) personal hotspots and ii)
public transport hotspots. Normally, a fixed hotspot has a
signal range of about 100 meters, so we apply the DBSCAN
clustering algorithm on all label locations for each hotspot.
Assume there are k labels available for one hotspot, we set
the minimum points of a cluster as 0.8k and the maximum
distance as 200 meters. If all the points are finally labeled as
“noise” after DBSCAN, it means the heard locations for the
hotspot are too sparsely distributed, and the hotspot is
highly likely to be mobile. We maintain the database by
keeping a record of all the mobile hotspots discovered, and
avoid using them in the following processing.

Besides the mobile hotspots that can be identified with
DBSCAN on their location labels, some hotspots are essen-
tially mobile but may not be easily identified using locations
if the carriers are static when the logs are collected, such as the
tachograph on vehicles which parked nearby or the personal
hotspots on mobile phones from users who work nearby. We
want to further eliminate these essentially mobile hotspots.
To fully utilize the information in the user log, we further
process the SSIDs for the remaining hotspots. There are sev-
eral typical patterns for personal hotspots enabled by per-
sonal mobile phones and hotspots enabled by tachographs on
vehicles. Many personal hotspots have the user’'s name and
the phone’s brand name as a default SSID, such as “Alice’s
iPhone 6” or “Ben’s Samsung Galaxy”. Similarly, we find that
many tachographs share the same pattern which starts with a
brand name and ends with a 4-digit or 6-digit model number,
such as “DR650GW-FOBF62” and “IROAD_AEV _077865”. We
search over the SSIDs of remaining hotspots and match these
patterns, and remove the hotspots of which the SSIDs have
similar patterns to avoid involving potential mobile hotspots
into our database.

As we want to limit the size of the database to achieve
efficient computation in the following process, labels with
same locations are combined into one by averaging the RSSI
for each hotspot, where the “same” is defined as within
1 meter distance. The number of combined labels is
recorded for a further combination. For any new label
inserted into the database, a same-location check/combina-
tion is performed to minimize the size of the database.

4.2 Problem Formulation

After filtering processing, we can construct a signal matrix S

for all the remaining labels. Assume that we have n hotspots

detected in m records, S will be a m x n matrix, and
S11 0 Sin

S = where s;; is the RSSI for the jth hotspot

Sm1 Smn

in the ith record. Each column represents one hotspot, and

each row represents one record. We fill all the blank cells
with a small default value s,,;,,. Locations of records are main-
tained using a m x 2 matrix u = [uy,...,u,] where u; =
[z, uzy]". Given the signal matrix S, our goal is, for any new
record s,,.1 € R'", to estimate the user location 1. It
turns out that, as a byproduct, we will obtain the hotspot loca-
tionsh = [hy,...,h,) simultaneously, where h; = [h;, hiy]'.

4.3 Manifold Construction
The construction of manifold is based on three facts: i) two
near locations receive similar signal strengths from sur-
rounding hotspots, ii) a user receives similar signal strength
from two hotspots near to each other, and iii) the nearer a
user is to a hotspot, the stronger the signal received will
be [16]. In our context, these translate to: i) if each row of S is
represented as a point in n-dimensional space, two locations,
u; and u;, spatially near in real-world should be close to each
other in the n-dimensional space, ii) if each column of S is
represented as a point in m-dimensional space, two hotspots,
h; and h;, spatially near in real-world should be close to each
other in the m-dimensional space, and iii) the larger s;; is, the
nearer jth hotspot is to the location of the ith record.
Therefore, we construct two separated manifolds first:
user location manifold and hotspot location manifold, and
the neighbourhood relationship is given by k-Nearest-
Neighbour (KNN) method. Since the RSSI and distance is
not linearly related, we first convert the RSSI values to
weights using a non-linear transformation to get the normal-

2
('Sij*Smax)_

ized signal matrix Sy: §;; = exp(— o7 ), where sy is
the maximum RSSI a user can receive in an outdoor environ-
ment, which indicates a significantly close distance between
user and hotspot. o is known as the Gaussian kernel width.
Empirically, we set $pac = —30 dBm and o = 12 based on the
crowdsensed data. Note that o affects the spatial density of
hotspots: the larger the o is, the more sparsely hotspots are
distributed. Given users’ geographic locations, we directly
use great-circle distance as the metric for user location mani-
fold. For hotspots location manifold, we use the euclidean
distance between column vectors in S as the metric.

For each manifold, we define a weighted adjacency matrix
— %) if i and j are neighbours in the
manifold; otherwise 0. Let A, be the m x m matrix for the
user location manifold and Aj, be the n x n matrix for the hot-
spot location manifold. To align the two manifolds into one,

Tyl TSN ]

TSS;V ThAh
where parameters r,, r,, 73, are set to be small positive values
induced by harmonic functions on the graph. A clearly repre-
sents the relative distances and connectivity among users
and hotspots based on the three aforementioned facts.

A, where a;; = exp(

we define a unified adjacency matrix A = {

4.4 Hotspot Online Location Labelling

As we are applying a semi-supervised learning mechanism,
parts of the manifold vertices have to be labeled to facilitate
the training for the unlabeled data. Among the two previ-
ously constructed manifold, user location manifold has all
the locations known because the GPS location readings are
available from user-submitted log, but none of the hotspots
bear location information. We propose two methods to give
a coarse-grained estimation for some of the hotspots in the
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TABLE 1

Hotspot SSID Examples for Public Places
SSID Place Name Place Category Place Source Keyword Tokens
Guest@Truefitt&Hill Truefitt & Hill Salon/Fashion FourSquare truefitt, hill
myhelper MyHelper Pte Ltd Agency Google Places  myhelper
keckseng-wlan2 Keck Seng (s) Pte Ltd Company Google Places  keckseng
brotzeit 2.4 Brotzeit Food FourSquare brotzeit
chanhampe?2 (5 ghz) Chan Hampe Galleries Art Gallery FourSquare chanhampe
iptv@south_african South African High Commission Government office ~ Google Places  iptv, south, african
www.homemart247.com (5g) HomeMart Home Services FourSquare homemart
smu_visitor Singapore Management University =~ University Google Places  smu
leica-store The Leica Store Store FourSquare leica, store
sunnyhills@raffles-2g Sunnyhills Confectionery Google Places  sunnyhills, raffles
fairmont_meeting Fairmont Singapore Hotel FourSquare fairmont, meeting

manifold. First, since the nearer a user is to a hotspot, the
larger the received signal strength (RSSI) will be, we can
apply a “cut-and-pin” method to set a high threshold saxioc
to pick out those user-hotspot pairs which are quite close to
each other, then locate the hotspots with the user location
labels as a rough estimation. For each hotspot ® and its label

set {(1®i; T@i)izlﬁg,m }/

if TOL > Smazloc
otherwise,

| 1ok, k = arg max;re;
1(®) = { NA.
where lg; represents the location of the ith user, r¢; denotes
the RSSI from O to that user, and N.A. means undefined.
This “cut-and-pin” method is easy to implement but suffers
from low accuracy given the signal vanishing and fading
effect in outdoor scenarios. We either end up with very few
hotspots located due to signal loss or locate the hotspot on
the street with sub-optimal accuracy.

Another method to locate the unlabeled hotspots is
through the analysis on the SSIDs. We find that many public
places (e.g., shops, restaurants, hotels) name their hotspots
by the names of the places. Table 1 shows some SSID exam-
ples in our collected data and their corresponding place
names in FourSquare/Google Places database. The similarity
between the SSID and the place name is sufficiently high for
us to confidently locate the hotspot to the corresponding
place. We first extract keywords from the SSID by (1)
removing hotspots with router brand names, (2) tokenizing
by non-alphabet character, (3) removing frequent words
(such as wifi, free, guest, visitor, ghz) and (4) generating
keywords from remaining tokens (example keyword tokens
are shown in Table 1). By the end of keyword extraction,
each hotspot will have several keywords and one keyword
may be shared by several hotspots since each place may
have more than one hotspot. To minimize the number of
queries issued to venue databases, for each keyword, we
further process all the location labels of all related hotspots
to get a location coverage of that keyword. Given the key-
word and the coverage, we query FourSquare API and Google
Places API through a “keyword + area” query-pair to
retrieve all the relevant places, p = (n,,1,), from these
online venue databases, where n, is the name string of p
and 1, is the geolocation of p. We further conduct a scoring
mechanism among all candidate places p for each hotspot ©
to determine the most suitable one. Given each returned
place p and its corresponding hotspot © (its SSID

represented by ng and all corresponding labels represented
by {(le;, 7'(91')7::1,2;--}/ we compute an overall similarity score
® between p and O as

(I) = wn¢n + wl¢l + w6¢(1’

where the individual scores are defined as follows, and w,,
w, w, are corresponding weights summing to 1.

e Name similarity ¢, is defined by adding several
string similarity metrics including Jaccard Similarity,
Normalized Levenshtein Distance, JaroWinkler Dis-
tance, Long Common Subsequence, Cosine Similar-
ity and N-gram Similarity, such that ¢, = >, «i,,;
(ny,ne) where each ¢,,(n,, ng) indicates a kind of
text similarity metric and «; is the corresponding
weight summing to 1.

e Location similarity ¢, = —corr(d, 7) is calculated as a
negative correlation between the distances sequence
of labels to the estimated locations and the normal-
ized signal strength sequence, where d = [d;,ds, ...,
d,], di =1le; —1,l|, and ©=[11,72,...,7,], T, =exp

v —sman)?
(—%) It is based on the assumption that the

distance from a user location to a hotspot location
should be inversely proportional to the received sig-
nal strength.

e Source credibility ¢, € [0, 1] assigns a higher valuetoa
more credible database, so that our scoring mecha-
nism tends to favor results from more reliable sources.

Among all the candidate places for a hotspot ®, we select
the most suitable place p° with the highest overall score,
and /> will be assigned to © as a location estimation. In spe-
cial cases where one place from the venue database is asso-
ciated with a large number of different hotspots, it is highly
possible that the place covers a large area, like outdoor park
or college. It is not appropriate to locate all the relevant hot-
spots to the same location, so we skip the large-area places
and keep the relevant hotspots unlabeled.

Although the “cut-and-pin” method does not have as
high accuracy as the SSID text analysis method, it does not
require any online query and will not suffer from potential
large error due to wrong matches or inaccurate database
information. However, SSID text analysis provides us with
more references for localization, and generally improves the
accuracy of localization by avoiding unexpected large errors
due to numerical instability. We will compare the perfor-
mance of these two methods in Section 5.4.2.
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(a) 0.07 km? (b) 0.14 km? (c) 0.04 km?

(d) 0.07 km? (e) 1.45 km? (f) 1.27 km?

Fig. 4. Maps provided by Google Map for all areas concerned in our experiments. (a) Downtown. (b) Campus. (c) Hybrid Residential Area. (d) Resi-

dential Blocks. (e) Community Area. (f) Downtown Entertainment Area.

4.5 Offline Learning for Location Estimations

To solve the hotspot locations and unknown user locations
at one time, we apply a semi-supervised learning approach.
Given the relative locations of users and hotspots repre-
sented by A, known locations denoted by y = [u’,h’]’, and
indication matrix K = diag(ki,, kpin) where k; =1 if the
location of user or hotspot is given in y, otherwise k; =0,
our objective is to find a set of locations p best fit current rel-
ative patterns and has the minimum fitting errors compared
to known locations. Therefore, the objective is

*

p' = argmin (p—y)'K(p—y) +vp'Lp, 2

PER(IYH»H) x2

where L is the graph Laplacian: L =D — A where D =
diag(dy, da, , dppyn) with d; = S 7" Aj. The second term is
the regularization term, where y > 0 controls the smooth-
ness of the coordinates along the manifold. The problem
has a closed-form solution

p = (K +yL) 'Ky, 3)

where p* = [u*,h"']" yields estimated locations for both
users and hotspots.

4.6 Online Location Query Processing
When processing the online location queries, involving all
records in a database (hence the full manifold) can be
avoided for efficiency purpose if the queries are geographi-
cally confined in a small region. In the WOLoc system, the
hotspot manifold is constructed offline and stored in the
database. Upon receiving a user location query (i.e., a record
with an unknown location, s,), WOLoc server searches
through the hotspots in the query record, and retrieves a
subset of relevant hotspots from the database. This candidate
set concerns all the hotspots in the query, as well as their
neighbouring hotspots in global hotspots manifold.

Then WOLoc selects a subset of records from the data-
base to formulate S along with the query record s,; a record
is selected if it contains an RSSI value significant enough for

any hotspot in the candidate set. A, is computed based on S
and sub-manifold retrieved from the global hotspot mani-
fold computed offline. Based on the location @ from the
selected records, WOLoc creates a user location manifold
online and inserts query record using KNN with the euclid-

ean distance betweer} row vectors in S as distanf:e metrics,
and then computes A,. After obtaining A, and A,, WOLoc
server applies the learning solver (3) to obtain the optimal
solution for these local structures and returns the queried
location back to the user. By processing a much smaller set
of records, the processing time is significantly reduced and

WOLoc can respond to the query more promptly, as we
shall demonstrate in Section 5.3.

5 SYSTEM EVALUATION

5.1 Experiment Setting

We conducted experiments in the following 6 outdoor
areas:

e  Downtown: central business district filled with com-
mercial and business buildings as shown in Fig. 4a.

e  Campus: educational institute district with buildings
in open area as shown in Fig. 4b.

e Hybrid Residential Area (Hybrid R.A.): medium-
density residential neighborhood with a few shops
and a community center as shown in Fig. 4c.

e Residential Blocks (R.B.): high-density residential
neighborhood filled with high-rises as shown in
Fig. 4d.

o  Community Area (C.A.): a mixture of residential high-
rises, private houses, markets, shopping malls and
community centers as shown in Fig. 4e.

e  Downtown Entertainment Area (D.E.): high-density of
business high-rises, shopping malls, restaurants, and
entertainment facilities along riverside as shown in
Fig. 4f.

As the commercial platforms either do not open their
database [11], [12] or have very limited coverage in our
city [10], we have limited open data from online sources for
our evaluation. We construct the cases (e) and (f) from
OpenBMap database that has in total 26 traces from 2010 to
2016 covering some of these 2 areas. To further extend our
evaluation cases, we develop an Android application to col-
lect WiFi and location data through walking and cycling.
The Android application continuously detects user location
using GPS module and scans surrounding WiFi hotspots at
1 Hz. For each hotspots scan, we record all the standard
information as discussed in Section 4.1.

All the complementary data are collected over a 2-month
period at various times in a day (30 percent in the morning,
53 percent in the afternoon, 17 percent in the evening). 3
Android phones with different brands (HTC One MS,
Xiaomi Redmi Note 4 and Samsung Galaxy S4) are used. In
each area, 2 traces are collected by each of the 3 phones, thus
in total 6 traces are collected to cover each of the areas. Data
in cases (a)-(d) are collected by walking, while data in cases
(e) and (f) are complemented by cycling given the larger area.

We have a full-implementation for WOLoc server in Java
on a PC with 16 GB RAM. For each evaluation, we select part
of records as testing data and use the remaining records as
training data. For each area, the server first builds a database
and constructs manifolds offline based on the training data,
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Fig. 5. Hotspots density for all areas in our experiments.

then it processes location queries in JSON format (generated
from testing data) and returns user locations.

5.2 Statistics on Hotspots

Fig. 5 shows the distribution of the number of hotspots
detected per record for each of the 6 areas. Table 2 shows
the statistics for hotspots per record for different areas. As
expected, downtown and campus have higher hotspot den-
sity than residential zones, where the number of hotspots
per record can reach more than 100 in some areas. Down-
town area also has the high variance in the number of hot-
spots per record as a result of various heights of buildings

TABLE 2
Hotspots Density and Number of Hotspots Per Record

# Hotspots per record

Hotspots Density
Area (APs/km?) F——
Mean tan. ar Median

Deviation
Downtown 30,400 51.32 32.99 41
Campus 32,900 88.42 36.08 91
Hybrid R.A. 27,300 32.17 6.95 31
R.B. 29,800 38.77 12.21 38
C.A. 18,800 35.90 15.89 32
D.E. 26,100 48.21 31.14 41
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Fig. 6. Processing time using all hotspots in a query and their neighbor-
ing hotspots. (a) Impact of number of hotspots/records. (b) Processing
time distribution.

and unevenly distributed buildings in the zone. Campus
has generally more hotspots detected per record and high-
est density, as the hotspots are densely located to achieve
high accessibility for all users in the campus. Residential
blocks have a bit denser hotspots distribution as the blocks
have more levels and more residents compared with private
semi-detached houses in hybrid residential area. Commu-
nity area, as a larger scale of residential area, share similar
properties as hybrid residential area and residential blocks.
Most of records in this case contain about 15 to 45 hotspots.
Downtown entertainment area has almost the same distri-
bution as downtown case, which shows not only streets and
pedestrian streets but also riverside streets have sufficient
hotspots equipped. However, the reported hotspots density
at the two large areas is lower than the first 4 areas as we
cannot cover the entire large space in details due to the lack
of manpower. In summary, nowadays metropolitan areas
have sufficient WiFi infrastructure to help outdoor localiza-
tion if we use them properly.

5.3 Time Efficiency of WOLoc Localization

We verify the time efficiency of the system before evaluating
its performance in term of accuracy. WOLoc has two sepa-
rated processes, namely offline process and online process.
During the offline process, logs submitted to the server are
pre-processed and global manifolds are pre-computed in
the server. It only happens when there are a sufficient num-
ber of new user logs received. An online process is invoked
in response to a user location query. This process involves
local manifold construction and location computation. Time
to accomplish the online process is the processing time for the
server to return location back to a user, so this is what we
are evaluating here.

We implement a full-version of WOLoc with pre-
processing module and “Cut-and-Pin” method for online
hotspot labelling. We arbitrarily select 100 records as testing
data and build the global manifold with the remaining
records. We record the time that WOLoc takes to accomplish
online processing for each query. We plot the processing
time as a function of number of hotspots involved in the
online processing in Fig. 6a; it is exponentially increased
with both number of hotspots and number of records. If we
retrieve all the surrounding hotspots concerned by a location
query, 70 percent of the queries in the experiment can be fin-
ished within 5 seconds as shown in Fig. 6b. The mean proc-
essing time is 4.22 seconds. To further reduce the processing
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Fig. 7. Error statistics as a function of number of candidate hotspots.

time, we test the performance by involving only those hot-
spots in the query and even a subset of it. We select the subset
based on the RSSI value, and we only take the hotspots with
strong RSSI values for further processing. Fig. 7 shows the
accuracy when processing with different numbers of hot-
spots. We observed that the location accuracy is largely
insensitive to this number as long as it is sufficiently large
(> 6). Figs. 8a and 8b show that, after reducing the number
of candidate hotspots, the processing time can be reduced to
0.5 s for most cases. The mean processing time is 158.12 ms
with a standard deviation of 146.98 ms. Therefore, for the fol-
lowing experiments, we only take the hotspots contained in
a query as candidates. As it is impossible to tell the process-
ing time from the Internet delay for public web services, we
have to omit the comparison of processing time at this stage.

5.4 Performance Analysis on Individual
Components
Before evaluating the performance of the entire system in
term of localization accuracy, we verify the effectiveness of
two main components of WOLoc: pre-processing (in
Section 4.1) and hotspot location labelling (in Section 4.4).
We arbitrarily select 100 records from each case as testing
queries, and use the remaining records as data in crowd-
sensed database to implement WOLoc system.

5.4.1 Pre-Processing of Crowdsensed Data

As mentioned in Section 4.1, pre-processing includes
removing records with inaccurate GPS data and removing
mobile hotspots by DBSCAN and SSID text analysis. To
evaluate the effectiveness of the pre-processing module, we
implement 2 versions for the system: one without pre-
processing module and one with pre-processing module.
For online hotspot labelling, we use SSID text analysis on
both versions for a fair comparison. The same 100 queries
arbitrarily chosen are issued to the two systems. Since the
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Fig. 8. Processing time using only hotspots in a query. (a) Impact of
number of hotspots/records. (b) Processing time distribution.
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Fig. 9. Accuracy comparison between WOLoc with/without pre-process-
ing in terms of median error and mean error.

pre-processing are in the offline process, we omit the evalu-
ation of online processing time for two systems.

Figs. 9a and 9b show a comparison between WOLoc
without pre-processing and a full-version WOLoc. Results
show that pre-processing improves the localization accu-
racy in all cases. There is no significant improvement in
campus case. It is probably because that (1) testing area in
campus is open and has no shelters or blocking, so GPS can
work properly; (2) no vehicles are parked at the testing zone
and few students are outdoor during testing period, so there
are few meaningless hotspots detected. As a result, pre-
processing module does not improve much for the results
in campus. However, in other more crowded cases where
GPS fails to work, the pre-processing module is proven to
successfully remove inaccurate and irrelevant data from
database and finally improves the localization accuracy.

5.4.2 SSID Text Analysis for Hotspot Localization

As presented in Section 4.4, we propose two methods to
label a hotspot to a fixed location: (1) “Cut-and-Pin” uses a
RSSI threshold to locate all hotspots to its nearest user loca-
tion label, while (2) “SSID text analysis” extracts useful
venue information from SSIDs of hotspots and label
hotspots’ positions with the help of online venue database.
To compare the performance of the two methods, we imple-
ment each method in two versions of WOLoc and test them
with the same queries to compare their performance. For
“Cut-and-Pin” method, we set the sy to -50 dBm. For
SSID text analysis, we connect it to both FourSquare API and
Google Places API for POI queries. We set the score weights
of name, location and source to 0.7, 0.2 and 0.1 respectively.
We use the average normalized similarity score for all kinds
of string similarity as the name score, and set the overall
score threshold as 0.6. Both systems are implemented with
pre-processing module. The same 100 queries selected ear-
lier are issued to both systems.

Figs. 10a and 10b show a comparison between “Cut-and-
Pin” and “SSID text analysis” in mean error and median
error for different cases. It is observed that SSID text analy-
sis significantly improves the mean error as it helps in
reducing errors for extreme cases. The average localization
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Fig. 10. Accuracy comparison between “Cut-and-Pin” and “SSID text
analysis” in terms of median error and mean error.

errors can be bounded within 30 meters for 6 different cases.
Except the last 2 cases with larger area, first 4 cases have
mean errors less than 10 meters. SSID text analysis helps to
reduce the median error in all 6 cases, which is further vali-
dated by Fig. 11. SSID text analysis not only constrains the
error within a boundary but also further improves the accu-
racy for sufficient small errors, leading to an overall better
performance.

Fig. 12 shows a case that using SSID text analysis signifi-
cantly improves the accuracy. Fixed hotspots by these 2 dif-
ferent methods are shown in red dots. Estimated positions
of hotspots are shown as green dots. Yellow dot is estimated
user location, while cyan dot is ground truth location.
Observe that SSID text analysis not only yields a better
localization accuracy, but also locates the unknown hotspots
inside the buildings instead of on the street.

Since SSID text analysis mainly happens during the off-
line training process, the online process only needs to query
the local database to check whether a certain hotspot has
been located based on SSID before. We compare the online
query performance time for both methods in Fig. 13. The
CDF of processing time for both methods are almost same,
and both methods are able to process nearly 80 percent of
queries within 200 ms. A detailed comparison in mean proc-
essing time and median processing time, Fig. 13b, shows
that SSID text analysis may result in slightly longer process-
ing time, but given the better error control and higher locali-
zation accuracy, “SSID text analysis” method outperforms
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Fig. 11. CDF of error for “Cut-and-Pin” and “SSID text analysis”.

(b) Case with “SSID text analysis”

Fig. 12. Example cases on how SSID text analysis improves localization
error for extreme cases. Yellow dots: the estimated location of users.
Red dots: fixed hotspot locations. Green dots: estimated hotspot loca-
tions. [Best viewed in color.].

“Cut-and-Pin” method generally. Therefore, we suggest
incorporating the SSID text analysis if the system allows
online queries to third-party venue databases during the
offline training process.

5.5 Accuracy of User Localization

As Section 5.4 verifies the effectiveness of pre-processing
module and suggests “SSID text analysis” as hotspot label-
ling method, we conduct the following experiments on a
full-version of WOLoc with pre-processing module and
“SSID text analysis” for online hotspot labelling.

To evaluate the accuracy of WOLoc in user localization,
we conduct 50 experiments for each area. For each experi-
ment, we first randomly select 100 records with a high accu-
racy level (<10 meters) and a sufficient number of satellites
(>8) as the testing set. The locations contained in these
records are treated as “ground truth” for the evaluation
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Fig. 13. Comparison between “Cut-and-Pin” and “SSID text analysis” in
processing time of online queries.
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Fig. 14. Error in meters for estimating user location using WOLoc.

purpose; they are temporarily removed from the records so
that they can emulate the location queries issued to WOLoc.
We then use the remaining records as the crowdsensed data
set to emulate the database; they are used by WOLoc to con-
struct the manifolds. We choose 100 since it is roughly
10 percent of all data in each of cases (a)-(d) and 5 percent of
all data in each of cases (e)-(f). We will examine the effect of
testing proportion on localization accuracy in Section 5.6.1.
In Fig. 14, we only report the results of 10 experiments in
each area due to space limitations. WOLoc yields median
error less than 7 meters for all testing cases in first 4 areas
(a)-(d), as well as third quartile of errors all less than
20 meters. Normally, an error less than 10 meters can be
achieved if the number of hotspots per record is high (e.g.,
in Campus case), whereas large errors are often due to
insufficient numbers of hotspots per record (e.g., in Down-
town case). For Community Area, it has a higher median of
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Fig. 15. Localization accuracy over various testing ratios.
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Fig. 16. Accuracy comparison between WOLoc with/without pre-proc-
essing in terms of median error and mean error.

13 meters compared with all other areas, and both Figs. 14e
and 14f have higher variances. These stem from the low
WiFi coverage given the much larger areas. Note that the
median errors yielded by WOLoc are quite comparable to
the accuracy level of GPS, which is about 3 to 7 meters if
there is a sufficient number of satellites.

5.6 Sensitivity Analysis
5.6.1 Training versus Testing Data Proportion

For the results presented in Section 5.5, the testing proportion
within total dataset is about 5 to 10 percent given each case
has about 1,500-2,000 records. We evaluate the performance
of the system by choosing different training/testing ratio. We
first randomly select 5, 10, 20, 50, 60, 70 80, 90 percent out of
the entire dataset for each of cases (a)-(d), and use the remain-
ing data as training data to build global manifold. Then we
test on all the selected queries and report the mean and
median error in Fig. 15. Results show that the testing ratio has
no significant impact on localization accuracy generally.
Median error remains about 7 meters for testing ratio below
60 percent and gradually increase with testing ratio from
60 percent. Similarly, mean error only shows an increase from
60 percent. It shows as long as the training data are evenly dis-
tributed within the zone, WOLoc does not rely on high-
volume of training data to achieve a satisfactory accuracy.

5.6.2 Number of Hotspots Per Query

We further analyze the effect of the number of hotspots
involved in each query on localization accuracy. We collect
all the testing results in Section 5.6.1 for all the testing ratio,
and group them by the number of hotspots involved in each
query. Fig. 16a shows the distribution for the number of hot-
spots involved per query. Over half of queries are with 20-
60 hotspots per query. Fig. 16b shows localization error for
different groups of queries with various numbers of hot-
spots. Queries with fewer than 10 hotspots suffer from a
large mean and median error, which is because there is too
limited information involved to infer an accurate location.
For queries with larger than 10 hotspots, median error
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Fig. 17. Performance analysis on hotspots label (temporal) granularity.

drops below 10 meters and the performance does not vary
much with the increase of the number of hotspots. It shows
the performance of WOLoc is not very sensitive to the num-
ber of hotspots.

5.6.3 Sampling Frequency

To evaluate how sampling frequency will affect the result,
we re-sample the collected data with a varying sample rate,
ie, only keep one record for every N records with
N =1,5,10,15. We only conduct this evaluation on cases
(a)-(d) as all data collected for these cases are at the same
sampling rate, because data on cases (e)-(f) are sampled at
an unknown frequency. Given the original sampling fre-
quency is 1 Hz, such re-sampling corresponds to different
sampling rate at 1/5,1/10, 1/15 Hz. This emulates a crowd-
sensing database at various granularity.

The median error at different sampling rate is shown in
Fig. 17a, and the statistics on the distance between two
consecutive records in the down-sampled database are
reported in Fig. 17b. The median errors for NV < 10 are all
below 10 meters, and the increase in median error for
N = 15 suggests that the WiFi labels may be too sparse for
localization purposes. Re-sampling at N =10 and N = 15
also helps us to simulate data from crowdsensed partici-
pants who contributed by driving a vehicle. When N = 10
or 15, the average distance between every two consecutive
records in the training sampling data is about 15 meters and
20 meters, respectively 54 and 72 km/h when sampling at 1
Hz, which is faster than normal driving speed in the city
street and results in quite sparse crowdsensed data points.
The results show that our system can also work on data col-
lected by users when driving,.

5.7 Comparison with Other Systems

We also compare WOLoc’s user localization accuracy
against 3 open-source or commercial systems available in
the market: OpenBMap Offline Localization System[10],
Skyhook Precision Location Service[1l1], and Google

[ I WO Loc [ OpenBMap [ Skyhook ] Google|
— 60 T T T T T T

®
2 50 -
Q
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230
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8 I e
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1

1

Fig. 18. Median error comparisons between WOLoc, OpenBMap, Sky-
hook, and Google for all six areas.

Location Service [12]. We issue the same location queries to
the 3 systems mentioned earlier. Though each of them has
its own database, the open-source nature of OpenBMap [10]
allows us to compensate its sparse WiFi labels: it has only
about 5,000 hotspots available in their database for the areas
that we conduct the experiments, so we add more hotspots
labels from WiGLE [9] to enlarge the database to over
25,000 hotspots. Skyhook[11] provides a Python API for us
to submit online location queries, but we have no details
about its database. A similar situation applies to Google
Location Service [12], but it by default requires GPS to
achieve an accurate localization, though WiFi-based locali-
zation is used to complement the GPS. To have a fair com-
parison, we disable GPS when issuing queries to Google in
JSON format through Google Maps Geolocation API [12].
OpenBMap returns a location containing only latitude and
longitude, but both Skyhook and Google return a JSON
response, in which besides the estimated location, there is
an “accuracy indicator” of the estimated location repre-
sented as the radius of a circle around the given location.
Fig. 18 shows a comparison between 4 different systems,
and it is very clear that WOLoc outperforms all of them.
Detailed error distributions are shown in Fig. 19 for all the 3
commercial systems with 10 test rounds for each of the 5
areas (1 area is omitted due to space limitations). Generally,
all 4 systems perform better in smaller areas (the first 4)
than larger areas (the last 2), but WOLoc significantly
improves the performance (in both statistics and distribu-
tions) compared with others. OpenBMap’s algorithm with
weighted centroid and Kalman filter performs worse given
the same database as WOLoc, which shows the ineffective-
ness of its oversimplified method. The other two commer-
cial systems are closed source and have self-maintain
databases, so we omit the discussion on their performance.

6 CONCLUSION

We present in this paper WOLoc as a WiFi-only outdoor
localization system that relies solely on crowdsensed hotspot
labels. We apply a semi-supervised manifold learning tech-
niques to estimate a queried location based on its connection
to the labeled manifold structure. We have conducted
experiments in 6 metropolitan areas, and our results show
that WOLoc yields localization errors between 5 to 15 meters
for most cases. This result is significantly better than 3 sys-
tems currently available in the market, namely OpenBMap,
Skyhook, and Google, in terms of WiFi-only outdoor locali-
zation, suggesting its effectiveness in outdoor localization.
We have also figured out that the density of WiFi labels is a
key, as WOLoc can have a larger localization error if the label
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Fig. 19. Location error distributions for three commercial systems: (a) to (e) for OpenBMap, (f) to (j) for Skyhook, and (k) to (o) for Google.

density is low. Finally, the average processing time after our
optimization is less than 200 ms, demonstrating WOLoc’s
capability in responding to real-time location queries.

As public databases with hotspot locations are still limited,

we have not evaluated the performance of WOLoc in areas
where GPS actually fails. Also, due to the lack of ground truth
for hotspot locations in our current experiments, we cannot
report the accuracy of hotspot localization that is a byproduct
of WOLoc. Therefore, we are planning to design better-con-
trolled experiments for these evaluation purposes.
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